Monitoring Joint-Space Narrowing in Rheumatoid Arthritis with 1.5T Whole-body MRI and 0.2T Extremity MRI in a Multi-site Clinical Trial: IMPRESS

C. Peterfy¹, E. Olech², J. DiCarlo¹, J.T. Merrill², P.J. Countryman¹, N. Gaylis³

¹Spire Sciences, San Francisco, CA, USA; ²Oklahoma Medical Research Foundation, OK, USA; ³Arthritis & Rheumatic Disease Specialties, Aventura, FL, USA

Background and Objectives

MRI is increasingly being used in clinical trials of rheumatoid arthritis (RA) because of its superiority over X-ray in detecting and monitoring changes in bone erosion, osteolysis and synovitis. However, in contrast to X-ray, the MRI scoring methods most commonly used in clinical trials, RAMRIS, does not currently include joint-space narrowing (JSN). This limitation has been an obstacle to substituting MRI for X-ray in clinical trials, as demonstration of erosion suppression has not been observed with JSN suppression. Cross-sectional studies have shown MRI to be sensitive for JSN in the hand and wrist, and to correlate well with X-ray, although longitudinal sensitivity to change has not yet been confirmed. In this study we monitor change in JSN with 0.2T extremity MRI (E-MRI) and conventional 1.5T whole-body MRI (C-MRI) in a multi-site clinical trial.

Methods

31 active RA patients from a clinical trial (IMPRESS) who were randomized equally into treatment with either rituximab + methotrexate or placebo + methotrexate had their dominant hand/wrist scanned at baseline, 12 weeks, and 24 weeks using C-MRI at 3 clinical sites. 23 of these patients also had E-MRI of the same hand/wrist at each visit. For this exercise, only coronal T1-weighted 3D gradient-echo scans were reviewed. E-MRI scans had 0.345 cm voxels. C-MRI scans had 0.216 cm voxels and included separate fat suppression. All patients were scanned using a specially designed frame to ensure reproducible joint positioning between visits. One radiologist (CP) scored all C-MRI images blinded to visit order. Another radiologist similarly scored all E-MRI images on a separate visit. Changes in JSN were determined by the C-MRI results. Erosions were scored using the RAMRIS scale. JSN was scored using a previously validated 9-point scale: 0 = normal, 0.5 = equivocal, 1 = minimal (definite disease), 1.5 = mild, 2 = moderate, 2.5 = severe, 3 = partial bone-on-bone, 3.5 = complete bone-on-bone, 4 = complete arthrosis. Data from the two treatment arms were pooled for this analysis.

Results

Of 2325 joints in the C-MRI group and 1725 joints in the E-MRI group, 4% and 2%, respectively, were outside the field of view and could not be assessed. The majority of these were PIP joints. Scores agreed well between C-MRI and E-MRI (ICC 0.97-0.99 cross-sectionally and 0.74-0.88 for change). As shown in Fig 3, mean JSN score increased at 12 and 24 weeks. Statistical significance was reached in both groups at 24 weeks. However, when only the 23 patients who had both E-MRI and C-MRI were analyzed, only E-MRI reached statistical significance.

Discussion

Cross-sectional studies have shown both C-MRI and E-MRI to be sensitive to JSN in RA, but to our knowledge this is the first study to demonstrate the ability of either type of MRI to monitor longitudinal change in JSN in a time-blinded multi-site clinical trial. Both E-MRI and C-MRI demonstrated significant progression of JSN in 24 weeks with only 23 and 31 patients, respectively. E-MRI's slightly better performance in this regard may have been because E-MRI covered more PIP joints than C-MRI did and, because of differences in contrast-to-noise ratio or spatial resolution between the two techniques. Regardless, both techniques performed impressively. Moreover, adding JSN allowed determination of a total MRI damage score (Fig. 3), analogous to that used in X-ray Sharp scoring. Unfortunately, radiographs were scheduled only at baseline and 12 months, so direct longitudinal comparison of the two modalities was not possible at this point in the trial. However, earlier analysis showed strong cross-sectional agreement between MRI and X-ray at baseline.

That MRI is good at monitoring JSN is not surprising. Firstly, MRI's tomographic viewing perspective obviates the problem of the radiographic concave articular components of joints over the joint space, as occurs with X-ray. However, MRI's greatest advantage is its ability to visualize articular cartilage directly rather than only estimate its thickness through joint-space width, as with X-ray. Laminar lacune formation and interposition of synovial effusion between articular surfaces undermines JSN as a measure of cartilage loss, and reduces its sensitivity to change. Thus, further optimizing E-MRI and C-MRI protocols for cartilage delineation, and adopting the JSN score described in this report to one for scoring cartilage loss directly may further improve the utility of MRI for monitoring joint destruction in RA.

These findings suggest that MRI may offer a viable alternative to X-ray in multi-site clinical trials of RA. With the recent shift to active-comparator study designs, which require longer study durations and more patients to demonstrate therapeutic superiority, and the increasing difficulty in recruiting RA patients into trials, there is greater need for more sensitive methods, such as MRI, to offset the escalating costs, patient exposure and logistical challenges associated with these trends.

References / Acknowledgements


Funding and study drug were provided by F Hoffmann-La Roche Ltd, Genentech Inc., and Biogen IDEC Pharmaceuticals.